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Abstract

Zipf’s Law characterizes city populations as obeying a distributional power law
and is supposedly one of the most robust regularities in all of economics. This paper
shows, to the contrary, that Zipf’s Law only emerged in Europe between 1500 and
1800. It also shows that Zipf’s Law emerged relatively slowly in Eastern Europe.
The explanation I propose has two parts. First, because land and land-intensive
intermediates entered city production as quasi-fixed factors, big cities were “too
small” before 1500. Then, as trade and rising agricultural productivity relaxed
the land constraint, it became possible for big cities to appear and Zipf’s Law
to emerge. Second, the institutions of the “second serfdom” in Eastern Europe
were associated with delayed emergence. I find that laws limiting labor mobility
and sectoral reallocation were associated with two factors that generate persistent
deviations from Zipf’s Law: relatively low variation in growth rates and a negative
association between city sizes and growth rates (“non-random” growth). These
legal institutions were also associated with the loss of several centuries of catch-
up growth in Eastern European cities – a 1/3 reduction in city growth between
1500 and 1800. This institutionally-driven retardation has not previously been
quantified. Taken together, these findings have important implications for how
economists think about cities and, more broadly, economic growth.
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1 Introduction

Economists have identified an underlying order in urban hierarchies: Zipf’s Law charac-

terizes city populations as obeying a distributional power law (a Pareto distribution) and

is supposedly one of the most robust regularities in all of economics. Krugman (1996a:

39) observes that this distributional regularity is so exact and so “suspiciously like a uni-

versal law” as to be “spooky.” Gabaix (1999a: 129) notes that it appears to hold in all

economies and periods for which there are data. This paper shows, to the contrary, that

Zipf’s Law only emerged in Western Europe between 1500 and 1800. It documents how

Zipf’s Law emerged with the development of markets in relatively advanced economies

in the centuries immediately preceding the onset of modern, capitalist economic growth.

The leading theories tie Zipf’s Law to either (1) random growth or (2) the underlying

distribution of geographic advantages or “locational fundamentals” (Krugman 1996a,

Davis and Weinstein 2002, Gabaix 2008). The random growth theory provides a bench-

mark for thinking about city population dynamics. The locational fundamentals theory

carries important predictions about the way geography shapes economic life. Zipf’s Law

is thus more than a mathematical curiousity and examining its emergence leads us to ask

important questions about cities and the determinants of growth.

This paper exploits data on the populations of European cities since 800 AD to exam-

ine and test the random growth and locational fundamentals theories. I document that

Zipf’s Law did not hold before 1500 and only emerged after city growth became random.

Similarly, I find significant churning in the distribution of European city populations –

evidence that geography matters but is not destiny.

In addition to testing the random growth and locational fundamentals theories, I

document that significant deviations from Zipf’s Law reflected big impediments to trade

and limits on the operation of markets. Historically, a land constraint limited the growth

of big cities, which grew relatively slowly and were far smaller than Zipf’s Law would

lead us to expect until at least 1500. As developments in trade and rising agricultural

productivity relaxed the land constraint, it became possible for large cities to grow as

fast as small cities. Zipf’s Law emerged with this “modern” pattern of size independent

growth 1500-1800, before the industrial revolution.

The paper also documents how institutional distortions shaped the pattern of city

growth in Eastern Europe. In Eastern Europe, the legal institutions of the “second

serfdom” placed severe restrictions on labor mobility and sectoral reallocation 1500-1800.

These institutions were associated with persistent deviations from Zipf’s Law and with

a 1/3 reduction in city growth 1500-1800.
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2 Literature

2.1 Zipf’s Law

Zipf’s Law for cities can be characterized in two ways.1 The first is in terms of the

probability distribution of city populations in the upper tail. Where Zipf’s Law holds,

city populations are distributed according to a power law such that the probability of

drawing a city with population size S greater than some threshold N is:

Pr(S > N) = αN−β (1)

Equation (1) is consistent with a power law distribution where the size ranking of a city

(denoted R) is inversely proportional to its population size2:

R = αS−β (2)

Equation (2) implies a tidy, second characterization of Zipf’s Law:

logR = logα− βlogS (3)

In the literature, Zipf’s Law is often illustrated by plotting city rank (R) against city size

(S). Figure 1 shows how Zipf’s Law is apparent in data on city populations in three high

income, three lower income, and three historical economies. In some cases, the literature

associates Zipf’s Law with the case where β ∼= 1. However, estimates of β vary across

time and economies. This paper focuses on the log-linear (power law type) relationship,

but takes an agnostic position on the range of acceptable β’s.3

2.2 Theories

Two types of theories have been advanced to explain Zipf’s Law. Random growth theories

explain Zipf’s Law as the outcome of a growth process in which all cities – big and small

– draw growth rates from some common distribution. Geographic theories explain Zipf’s

Law as reflecting the distribution of natural advantages across locations.

1The proper entities are urban agglomerations, which are what this paper analyzes.
2Even if the data generating process conforms to equation (1), equation (2) only holds approximately.

Gabaix (1999b, 2008) provides discussion and derivations.
3Gabaix and Ioannides (2004: 2350) observe: “the debate on Zipf’s Law should be cast in terms

of how well, or poorly, it fits, rather than whether it can be rejected or not...if the empirical research
establishes that the data are well described by a power law with exponent β ∈ [0.8, 1.2], then this is a
useful result.” NB: For consistency, notation changed to β.
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Figure 1: Zipf’s Law Across Time and Space
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Note: Contemporary data from Brinkhoff (2008). Historical data for India,
Germany, and the USA from His Majesty’s Stationary Office (1905), Bairoch
et al. (1988), and Gibson and Jung (2005), respectively.

Gabaix (1999b, 2008) has shown that Zipf’s Law may emerge as the limiting distribu-

tion of a process in which cities draw random growth rates from a common distribution.

Beyond random growth, the key assumption in Gabaix (1999b) is that there is an ar-

bitrarily small reflecting barrier that prevents cities from getting “too small.”4 Earlier

contributions tying Zipf’s Law to random growth include Krugman (1996a) and Simon

(1955) and are reviewed in Gabaix (1999b, 2008).

Recent theoretical work has explored how random growth may deliver Zipf’s Law.

Cordoba (2004) provides a model in which either tastes or technologies follow a reflected

Brownian motion. Rossi-Hansberg and Wright (2007) develop a model in which there

are increasing returns at the local level and constant returns in the aggregate, and Zipf’s

Law emerges under special circumstances.5 In Cordoba (2004) and Rossi-Hansberg and

Wright (2007), cities specialize in particular final (or tradable) goods, and Zipf’s Law

emerges as cities reach efficient size given their specialization.

Against theories that center on random growth, Krugman has suggested a geographic

explanation. Krugman (1996b) observes that the physical landscape is not homogeneous,

and that the distribution of propitious locations may follow a power law and thus account

for the size distribution of cities.6 Davis and Weinstein (2002: 1269-1270) similarly argue

4This assumption is consistent with the historical evidence. Livi-Bacci (1999) observes that while
certain cities have experienced relative decline, since 1000 AD cities have rarely disappeared in European
history. Without this assumption, random growth delivers a lognormal distribution, not a power law.

5It emerges when (i) capital does not enter production and permanent productivity shocks are the
only shocks, or (ii) production is linear in capital and shocks are transitory.

6As discussed on p. 13, the fact that Zipf’s Law emerged over time, and that there was substantial
“churning” in Europe’s urban hierarchies, indicates that a purely geographic theory will be insufficient.
It also suggests that pre-modern growth was non-random.
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that city size hierarchies are determined by locational fundamentals that are essentially

fixed over time. Davis and Weinstein observe that, “crucial characteristics for locations

have changed little over time...for example, there are advantages of being near a river, on

the coast, on a plain instead of a mountain.” In their view, “Instead of city growth itself

being random, it is fundamental economic characteristics of locations that are random.”

2.3 Evidence

In recent work, Ioannides and Overman (2004) show that contemporary city growth in

the USA appears to be random. But Soo (2005) examines cross-country data and finds

that they are inconsistent with a β = 1 Zipf’s Law in many economies, a finding also

emphasised in Ioannides et al. (2008). Rossi-Hansberg and Wright (2007) observe that

contemporary data are marked by a mild case of what this paper shows was a glaring

historical fact: from the perspective of Zipf’s Law, small cities are under-represented

and big cities are too small. They argue that this results when small cities grow quickly

and large cities grow slowly. Gabaix (1999b) observes a further anomaly: capital cities

typically do not conform to Zipf’s Law. I return to these points below.

Davis and Weinstein (2002) provide evidence in support of the locational fundamentals

view. Davis and Weinstein find that a regional analogue to Zipf’s Law holds across time

periods stretching back thousands of years and that the hierarchy of regional population

densities in Japan has been relatively stable over many centuries. They also observe that

the Japanese city size hierarchy has been stable even in the face of massive shocks due to

the firebombing of select Japanese cities during the World War II. Based on these findings

they argue that fixed locational fundamentals are key determinants of the distribution

of populations and that random growth theories are flawed.

The economic history literature has examined Zipf’s Law in a number of settings, but

to my knowledge has not examined its emergence in Western Europe.7 Russell (1972)

provides data revealing that, from the perspective of Zipf’s Law, the largest cities in the

urban systems of medieval Europe were relatively small. Similarly, de Vries (1984, 1990:

52) observes that urban systems may not always conform to Zipf’s Law and that rank-

size distributions, “can summarize effectively the process of urbanization and identify

gross differences in the design of urban systems over time [and] in different societies.”8

7See, for instance, Guérin-Pace (1995), Bairoch (1988), and de Vries (1984).
8In de Vries (1984), analysis is restricted cities with population of 10,000 or more and the period

1500-1800. This paper examines a panel of cities with population of 5,000 or more over the period
800-1800. In addition, this paper examines data on all European cities while the de Vries data excludes
much of Eastern Europe.
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Archaelogical data confirm departures from Zipf’s Law across a range of pre-modern or

non-capitalist economies (Johnson 1980, Drennan and Peterson 2004, and Savage 1997).9

3 Data

In this section I present the city population data and the regional classification of cities.

Additional data are discussed as introduced and in Appendix A.

3.1 Data on City Populations

This paper employs data on European city populations from Bairoch et al. (1988). Their

approach is to identify the set of cities that ever reached 5,000 inhabitants between 1000

and 1800, and then to search for population data for these cities in all periods. The data

are intended to record (in thousands) the populations of urban agglomerations, not simply

populations within administratively defined boundaries.10 These data – henceforth the

“Bairoch data” – are recorded every 100 years 800-1700, and then every 50 years to 1850.

This paper only examines cities with population of at least 5,000. It further restricts

the principal analysis to the period from 1300 forward, when data on a relatively large

set of cities are available. Table 1 summarizes the Bairoch data.

I test for measurement error in several ways. In Appendix B I compare the Bairoch

data to the most comprehensive independent source for city population data, the database

in de Vries (1984).11 I document that the Bairoch and de Vries population figures are

on average within 7 percentage points of each other and that there is no evidence of

systematic shortfalls in the populations that the Bairoch data record for large cities.12

However, it is possible that there is non-classical measurement error in both the Bairoch

9Zipf’s Law has also been examined by anthropologists. Smith (1982) observes that pre-capitalist
economies typically do not exhibit Zipf’s Law. Smith suggests deviations from Zipf’s Law may be due to
limited “commercial interchange” or to low agricultural productivity, but does not identify the negative
correlation between size and growth as the key source of historical deviations from Zipf’s Law.

10Bairoch et al. (1988: 289) make a special effort to include, “the ‘fauborgs’, the ‘suburbs’, ‘communes’,
‘hamlets’, ‘quarters’, etc. that are directly adjacent” to historic city centers. Bairoch et al. draw data
from primary and secondary sources. Prior to publication the data was reviewed by 6 research institutes
and 31 regional specialists in urban history.

11The Bairoch data covers all European cities that reached 5,000 inhabitants by or before 1800, has
rich data from 1300 to 1850, and contains observations on 2,204 cities. The data in de Vries (1984)
covers cities that reached a population of 10,000 between 1500 and 1800 and covers 379 cities.

12Classical measurement error is not a plausible explanation for the observed deviations from Zipf’s
Law. Gabaix (2008) observes that: power laws are preserved under addition, multiplication and poly-
nomial combination; multiplying by normal variables or adding non-fat tail noise does not change the
exponent; and while noise will effect variances in empirical settings, it does not distort the exponent.
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Table 1: City Growth in Western Europe
Table 2: City Growth in Western Europe

Period Cities Mean St. Dev.
(1) (2) (3) (4)1 1 1

800 - 900 31 0.09% 0.52%
900 - 1000 13 0.30% 0.77%

1000 - 1200 74 0.16% 0.30%
1200 - 1300 99 0.14% 0.58%
1300 - 1400 255 -0.22% 0.58%
1400 - 1500 187 0.06% 0.52%
1500 - 1600 321 0.18% 0.46%
1600 - 1700 514 -0.13% 0.55%
1700 - 1750 539 0.28% 0.60%
1750 - 1800 686 0.29% 0.63%
1800 - 1850 1,311 0.68% 0.78%

Note: Growth rates and standard deviations computed on an annualized basis.

data and de Vries (1984). In section 4.1, I show that the data would have to embody

implausibly large non-classical measurement error for Zipf’s Law to have actually held.

In section 5, I show that the observed deviations from Zipf’s Law are consistent with the

narrative evidence collected by social historians.

3.2 Regional Classification of Cities

This section explains why it makes sense to examine the Zipf’s Law in Western Europe

as a whole and how differences in the institutional environment distinguished cities in

Western Europe from cities in Eastern and Ottoman Europe.

The unit of analysis in contemporary research on Zipf’s Law is typically the national

economy. However, a transnational perspective is appropriate for an analysis of city

growth in European history. Between 1000 and 1800, political fragmentation allowed

cross-border economic linkages to organize urbanization and for European cities to begin

to develop a single urban system.13 Significantly, the deviations from Zipf’s Law docu-

mented in this paper are not figments of the aggregation. The emergence of Zipf’s Law

in Western Europe 1500-1800 was mirrored by its emergence over the same period at the

local and national levels. These facts are documented in Appendix C.

Cities West of the Elbe River, which cuts through Eastern Germany, developed in a

distinct institutional environment. The distinction between Western and non-Western

13See de Vries (1984), Nicholas (2003), Landes (1998), and Jones (1981).
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cities was determined by two key aspects of economic institutions: first, the presence of

institutions securing municipal autonomy for cities; second, the nature of the institutions

determining the possibilities for mobility between the rural and urban sectors.14 Town

charters in the West typically guaranteed townspeople the right to legal proceedings in

town courts, the right to sell their homes and to move, and freedom from most obligations

associated with serfdom (e.g. arbitrary taxation, the provision of labor services, the head

tax, and most forms of military service). These legal institutions fostered relatively secure

property rights and the growth of urban commerce.15 In Eastern and Ottoman-controlled

Europe, cities developed in a different institutional environment. Under the Ottmans,

cities were not granted municipal autonomy, allocations were more heavily influenced by

administrative means, and city growth was also shaped by the “ruralization” of Chris-

tian populations.16 In Eastern Europe, where German city law (Deutsches Städtrecht)

had previously secured freedoms for townspeople and villagers, institutions limiting labor

mobility and city autonomy were installed after 1500. These laws forbade seasonal mi-

gration, tied tenant farmers to rural estates, provided for the return of fugitive serfs, and

limited the activities of merchants. An extensive literature documents the importance

of the Elbe River as an institutional boundary distinguishing Western Europe from a

central Eastern Europe in which the legal institutions of serfdom were strengthened after

1500.17 Section 8 (below) examines the institutional geography, the nature of these laws,

and their impact on city growth in greater detail.

4 How Zipf’s Law Emerged

4.1 Documenting the Facts

In this section I use graphs, OLS, quantile, and robust regression to document the paper’s

key motivating fact: that Zipf’s Law emerged over time.

Figure 2 provides the motivating picture for this paper. It describes the evolution of

city size distributions between 1300 and 1800 in Western Europe. It shows that prior to

1600 the large cities were “too small,” and how Zipf’s Law emerged over time, by plotting

14As discussed below, I follow the historical literature on the geography of economic instutions and
take as Western all cities West of the Elbe and/or its tributary the Saale.

15See Pirenne (1927), Braudel (1979a, 1979b), Friedrichs (1995), Nicholas (2003), Scott (2005),
Bideleux and Jeffries (2007), and van Zanden et al. (2010).

16See Stoianovich (1994), Todorov (1983), Sugar (1977), Bairoch (1988), Hohenberg and Lees (1985),
de Vries (1984), Bideleux and Jeffries (2007), and Anderson (1974b).

17Contributions include Kriedte (1979), Berend (1986), Robisheaux (1998), Bideleux and Jeffries
(2007), Süchs (1988), Maddalena (1977), Brenner (1974), Anderson (1974a), and Blum (1957).
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observed populations against fitted values associated with the robust non-parametric re-

gression estimator proposed by Theil (1950).18 Table 2 measures the historical deviations

from Zipf’s Law. It provides quantitative evidence that deviations from Zipf’s Law went

from being large in 1300 to small in 1800.

Figure 2: The Emergence of Zipf’s Law in Western Europe
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Note: This figure plots (1) raw data on city populations (Si) and their cor-
responding size rankings (Ri), and (2) fitted values estimated using robust
non-parametric Theil regression and the model: ln(Ri) = α − βln(Si) + εi.
Populations in thousands are from Bairoch et al. (1988).

A formal test rejects the null hypothesis that the data follow a power law distribution

up through 1500. Indexing cities with i and denoting city size S and city rank R, the

test developed in Gabaix (2008) relies on an OLS regression:

ln(Ri − 1/2) = δ0 + δ1lnSi + δ2(lnSi − S∗)2 + εi (4)

where S∗ ≡ cov[(lnSi)
2, lnSi]/2var[lnSi] and the shift of -1/2 provides the optimal reduc-

tion in small sample bias in the OLS setting.19 Under the Gabaix test, we reject the null

18The way robust regression can be used to gauge departures from power laws is discussed below
in section 4.1. Appendix D discusses the Theil estimator and shows that for estimating power law
exponents it is superior to OLS and competitive with the adjusted-OLS estimator proposed by Gabaix
and Ibragimov (2007) in terms of both small sample properties and precision.

19An earlier literature examined Zipf’s Law with regressions: ln(Ri − 1/2) = β0 + β1lnSi + β2lnS2
i +

νi. As discussed in Gabaix (2008), heteroskedasticity-robust standard errors will be biased down in
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Table 2: Mean Square Deviations from Zipf’s Law
Table 1: Mean Square Deviations from Zipf's Law

Year Deviation
(1) (2)

1300 6.27%
1400 4.21%
1500 1.51%
1600 0.58%
1700 0.50%
1800 0.18%

Note: For cities indexed with i = 1, . . . , N , actual (observed) population
Sa
i , and Zipf-consistent population Sz

i computed from Theil regression

estimates, mean square deviation is: MSD = N−1
∑N

i=1(Sa
i /S

z
i − 1)2.

hypothesis of a power law with 95 percent confidence if and only if |δ̂2/δ̂1
2
| > 1.95(2n)−0.5.

Table 3 presents parameter estimates from (4). It shows that we can reject Zipf’s Law

in Western Europe up through 1500, but that we can not reject Zipf’s Law in Western

Europe from 1600 forwards.

Table 3: A Regression-Based Test of Deviations from Zipf’s LawTable 5: Regression-Based Test for Deviations from Zipf's Law

Year Observations δ 1 δ 2 Reject ZL
(1) (2) (3) (4) (5)

1300 255 -1.31 -0.33 Yes
(0.02) (0.03)

1400 187 -1.15 -0.26 Yes
(0.12) (0.03)

1500 321 -1.35 -0.24 Yes
(0.11) (0.02)

1600 514 -1.33 -0.11
(0.08) (0.01)

1700 539 -1.22 -0.06
(0.07) (0.00)

1800 1,311 -1.40 -0.02
(0.05) (0.00)

Note: The regression is: ln(Ri − 1/2) = δ0 + δ1lnSi + δ2(lnSi − S∗)2 + εi, where Ri is city rank,
Si is city population, and S∗ ≡ cov[(lnSi)

2, lnSi]/2var[lnSi]. Following Gabaix (2008), we reject the

null hypothesis of a power law with 95 percent confidence if and only if |δ̂2/(δ̂1)2| > 1.95(2n)−0.5.
Standard errors adjusted to correct for the positive autocorrelation of residuals induced by ranking.

this specification and the statistical significance of β̂2 is not a robust criterion for a test of Zipf’s
Law. However, to facilitate comparison with existing studies, Appendix E presents results from this
specification which support the conclusion that Zipf’s Law emerged in Western Europe over 1500-1800.
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Quantile regression identifies more precisely where over the range of city sizes the

curvature in the rank-size relation emerges.20 Table 4 presents historical estimates of

local, quantile slope parameters associated with equation (3). It shows that the big non-

linearities were at the upper end of the city size distributions. In Table 4, as τ declines

the estimates describe the local Zipf exponents (slopes) associated with progressively

larger cities.21 That the big non-linearities are located at the upper end of the city size

distribution is evident in the fact that local slopes change modestly as τ falls from 0.9 to

0.25 and sharply as τ falls from 0.25 to 0.1. By 1800 the local Zipf exponents of Western

European cities are relatively stable in the upper tail (i.e. as τ declines).

Table 4: Quantile Regression Estimates of Zipf ExponentsTable 6: Quantile Regression Analysis of Zipf Exponents

Quantile Slope Parameters
Year τ = 0.9 τ = 0.75 τ = 0.5 τ = 0.25 τ = 0.1
(1) (2) (3) (4) (5) (6)

1500 1.12 1.17 1.19 1.16 1.42
(0.04) (0.01) (0.01) (0.04) (0.09)

1600 1.26 1.28 1.24 1.25 1.32
(0.01) (0.01) (0.02) (0.04) (0.01)

1700 1.12 1.12 1.13 1.19 1.24
(0.01) (0.00) (0.02) (0.01) (0.01)

1800 1.33 1.37 1.39 1.39 1.41
(0.01) (0.01) (0.00) (0.00) (0.00)

Note: slope parameter β(τ) estimated with a quantile regression:
log(ranki ) = α  - β(τ)log(sizei ) + εi .  As τ declines, quantile regression
estimates describe the local slope associated with progressively 
larger cities.  Bootstrapped standard errors in parentheses.

Note: Quantile slope parameter β(τ) estimated with regression: lnRi = α−β(τ)lnSi+εi.
As τ declines, quantile regression estimates describe the local slope associated with
progressively larger cities. Bootstrapped standard errors in parentheses.

It is, however, conceivable that non-classical measurement error accounts for the pro-

nounced deviations from Zipf’s Law in the upper tail – that historical records undercount

populations in big cities. It is also possible that historical data undercount populations

of small cities. It bears noting that several characterizations of the deviations from Zipf’s

Law are observationally equivalent. We might observe either (1) that the big cities are

too small and the small cities too few in number or (2) that there are too many mid-

sized cities. As discussed below this pattern emerges when growth rates are negatively

correlated with city populations.

20Quantile regression relaxes an assumption the OLS estimator embodies: that, given independent
covariates, conditional quantile functions of the response variable have a common slope. Quantile relaxes
this assumption by assuming a piecewise linear loss function and minimizing the (asymmetric except in
the case where τ = 0.5) sum of absolute residuals. See Koenker (2005).

21The parameter τ defines quantiles in the response variable, city rank. The τ quantile in the city
rank distribution corresponds to the (1− τ) quantile in the city size distribution.
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To gauge the possibility that the data undercount populations in the largest cities, I

estimate hypothetical Zipf’s Laws and calculate deviations from these benchmarks. The

exercise amounts to asking: How much larger (smaller) would outlier cities need to be to

generate a pure log-linear relation? There are several reasons to use a robust regression

estimator in this exercise. As shown in Appendix D, when data are generated by a

stochastic power law, OLS estimators exhibit pronounced small sample bias. Moreover,

there appear to be outliers and the performance of OLS estimators is poor when there are

heavy-tailed error distributions or when leverage points are present. Further, examination

of the residuals from a robust regression can identify outliers, which examination of OLS

residuals typically cannot do.22

Table 5 uses the Theil estimator to construct a measure of deviations from Zipf’s

Law. It uses the Theil regression predictions displayed in Figure 2 to compare observed

population to “Zipf-consistent” population for the biggest cities in Western Europe. It

shows that between 1500 and 1700 the biggest cities were consistently far smaller than

they needed to be to satisfy a rank-size rule. For instance, the ten largest cities were

on average less than 1/2 the size of the counter-factual Zipf-consistent populations in

1500. The magnitudes of the big city population shortfalls are so big that non-classical

measurement error is not a plausible explanation for the observed deviations from Zipf’s

Law. The fact that the divergences are all shortfalls is consistent with the narrative

evidence presented in the next section.23

Table 5: The Ratio of Actual to Zipf-Consistent Population

Table 7: Deviations from Zipf's Law in Eastern and Western Europe
Panel A: Ratio of Actual to Zipf-Consistent Population for Top 10 Cities

Top 10 Cities 1500 1600 1700 1800
(1) (2) (3) (4) (5)

1 1 0.3 0.4 0.5 1.1
2 0.5 0.3 0.7 0.8 1.1
3 0.33 0.4 0.7 0.7 1.2
4 0.25 0.4 0.6 0.6 0.7
5 0.2 0.4 0.7 0.7 0.8
6 0.17 0.4 0.8 0.6 0.9
7 0.14 0.5 0.8 0.7 0.8
8 0.13 0.5 0.8 0.8 0.8
9 0.11 0.5 0.8 0.8 0.8

10 0.1 0.5 0.7 0.7 0.9

Note: This table shows the ratio of actual population (Sa
i ) to Zipf-consistent popu-

lation (Sz
i ). Zipf-consistent population is estimated using the predicted values from

the Theil regressions in Figure 2.

22See Koenker (2005), He et al. (1990), and Rouseeuw and Leroy (1987).
23When the data follow a distributional power law, ratios of city sizes in the upper tail have high

standard deviations (see Gabaix 1999b). However, this variation is not likely to explain systematic,
persistent short-falls in the upper tail. This can be verified with Monte Carlo simulations.
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4.2 Implications

The observed deviations from Zipf’s Law have three key implications. First, because the

principal geographic features of the European landscape – e.g the location of navigable

rivers and bays suitable for ports – remained essentially unaltered before 1800, the fact

that Zipf’s Law emerged between 1500 and 1800 suggests that it is due to something

beyond a power law distribution of propitious locations.

Second, if random growth is the explanation for the rank-size regularity, the fact

that this regularity emerged relatively recently implies that there was persistent non-

randomness in urban growth in the pre-modern era.

Third, something other than specialization in goods production accounts for Zipf’s

Law. Models of urban hierarchies, from Henderson (1974) to Black and Henderson (1999),

Cordoba (2004), and Rossi-Hansberg and Wright (2007), assume industrial specialization

accounts for city size distributions. In these models, industry-specific externalities com-

bine with diseconomies that increase in city size, driving cities to specialize in specific

tradable industries and to optimal size for their particular activities. But Figure 2 shows

that “modern” patterns of urban hierarchy emerged before the widespread adoption of

the factory system, when industrial specialization, inter-city trade, and even the non-

industrial functional specialization of cities was relatively limited.24

5 Explaining the Emergence of Zipf’s Law: History

In this section I discuss why land was a quasi-fixed factor for pre-modern cities, how this

limited the growth of large cities prior to 1500, and how this changed after 1500. I also

discuss the demography of pre- and early modern cities.

Historically, transport costs and the risks associated with long distance trade in food

constrained cities to rely on local sources for land-intensive wage goods. Contemporaries

recognized that this constraint prevented the proportionate growth (size-independent

growth rates) associated with Zipf’s Law. In 1602, Giovanni Botero noted that, “cities

once grown to a greatness increase not onward according to that proportion.” Botero

considered and rejected explanations centered on wars, plagues, and chance. He observed

that the absence of proportionate growth was explained by the difficulty large cities had

in feeding themselves given prevailing transport costs (Botero 1602, Book 2, Pt. 9).

24Nicholas (2003: 7) observes that, “Probably no pre-modern city was as functionally specialised as
modern industrial cities tend to be.”
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In early modern Europe, agricultural surpluses were limited, poor harvests brought

famine, and secure access to food supplies was a precondition of the growth of large cities.

The security of supplies was often dependent on the degree of control cities could exert

on the surrounding countryside. For Paris, the largest city in 17th century Europe, the

problem of securing foodstuffs was especially acute, and is repeatedly stressed by contem-

porary commentators. Generically, the largest cities faced similar challenges. In 1591,

Pope Gregory XIV issued an edict designed to facilitate the provisioning of Rome from

its countryside. In Northern Italy, great cities – like Milan and Florence – conquered and

dominated dependent territories that included smaller cities and agricultural hinterlands.

Cities on the Istrian and Dalmatian coast similarly controlled territories that stretched

inland to the mountains. However, while a city’s ability to control a rural district was

typically contingent on the absence of a strong regional prince, urban territorial expan-

sion was most often the result of purchases, foreclosed mortgages, and piecemeal treaty

acquisitions – and not military conquest. In Germany, Nürnberg, Ulm, and Schwäbish

Hall acquired hinterlands of 1,200, 830, and 330 km2, respectively. The balance of po-

litical and economic influence might differ, but similar struggles emerged: Lübeck and

Hamburg experienced a series of conflicts with the counts of Schleswig-Holstein and kings

of Denmark over their rival claims on land, waterways, and resources. Broadly, growth

at the upper end of the city size distribution was limited by the land constraint.25

If control over the countryside was important, transportation costs were the other

central constraint. Transportation costs – especially for heavier products and overland

transport – were exceedingly high. Grain transported 200 kilometers overland could

see its price rise by nearly 100 percent. While the early modern period saw major

developments in the international trade in grain, most cities remained heavily reliant on

the provision of foodstuffs from a within a circle of 20 to 30 kilometers which avoided

heavy transport costs and the risks of reliance on foreign supplies.26 As a result, cities

preserved substantial forms of land-intensive production. There were gardens, fields, and

areas devoted to livestock within cities themselves.27 Costs associated with the transport

of fuel generated similar bottlenecks (Ballaux and Blondé 2004).

The fact that land – or a land-intensive intermediate – was a quasi-fixed factor in

urban production, is reflected in price data. Kriedte (1979: 27) notes that in the late 16th

century grain and oxen prices were, respectively, 89 and 270 percent higher in Antwerp

25See Scott (2004), de Vries (1976), Pounds (1990), Weber (1958), Pirenne (1958), Chittolini (1994),
Livet (2003), Blockmans (1994), Nicholas (2003), Vilfran (1994), Miller (2008), Braudel (1979c).

26See Pounds (1979: 61), Nicholas (2003: 43), and Braudel (1979a: 133). Ballaux and Blondé (2004)
suggest transport over land was four times more expensive than on navigable rivers. I discuss water-borne
transport and estimate the growth advantage enjoyed by ports and cities on navigable rivers below.

27Braudel (1979a), Nicholas (2003), Scott (2004), and Friedrichs (1995).
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(commercial hub of relatively urbanized Holland) than in Danzig (principal port of rural

Poland). Pounds (1979: 61) observes that prices of agricultural products were broadly

increasing in town size. The price data supports these observations. Figure 6 plots

consumer prices and bread prices from Allen (2001) against city population, along with

the fitted values from a median regression of consumer prices on city size.28 It shows that

(1) consumer prices tracked bread prices, (2) prices were correlated with city size, and

(3) that the correlation declined over time.29 The data thus support the argument that

while food prices were increasing in city size, the land constraint softened over time.30

Figure 6: Consumer Prices and City Sizes
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Note: Price data are from Allen (2001). Bread prices scaled by multiplying by 100.

Two factors relaxed the land constraint on city growth: the development of the in-

ternational grain trade and increases in agricultural productivity. The grain trade was

known to the Dutch as the moedernegotie: the “mother of all trades.” In the Northern

Netherlands, where city growth was unusually rapid, the bread and beer supply of city

populations depended on grain imports. Grain came to be imported in quantities suffi-

cient to feed 1 in 4 inhabitants of the Dutch Republic (van Tielhof 2002: 1). As shown

in Table 6, Dutch grain imports were sufficient to feed the entire urban population of

the Netherlands by 1600. Moreover, as de Vries and van der Woude (1997: 414-5) ob-

serve, “grain was the commodity that gave Dutch merchants entrée to the Iberian and

Mediterranean ports from the 1590s on.” These developments were made possible by

innovations in shipping technology (notably the introduction of the fluyt vessel) and an

28Allen (2001) provides data on the price of bread and consumer price indices in which basic land-
intensive products account for two-thirds of indexed spending.

29OLS estimates confirm the decline in correlation between prices and city size. The OLS estimate
(standard errors in parentheses) declines from 0.21 (0.08) in 1600 to 0.19 (0.07) in 1700 and 0.17 (0.07)
in 1800.

30Historical evidence suggests that the price differentials associated with city size are not accounted
for by the higher rents paid by bakers and other retail establishments selling basic wage goods. See
Kriedte (1979) and Pounds (1979, 1990).
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associated decline in freight shipping costs on maritime routes in the 16th century. In

the 1510’s, the cost of shipping rye from the Baltic to Amsterdam represented over 20

percent of its price when sold in Holland. By the 1580’s and 1590’s, ratio of shipping

costs to sale prices fell to an average of 10 percent (see van Tielhof 2002: 198).

Table 6: Dutch Imports of Baltic Grain
Dutch Imports of Baltic Grain

Period Hectolitres/Year Enough to Feed
(1) (2) (3)

1550s 1,053,500 263,375
1590s 1,745,800 436,450
1640s 2,859,500 714,875

Van Tielhof
Note: Data from van Tielhof (2002). Calculations assume consumption of 4 hectolitres
per person per year. In 1600, the 24 largest Dutch cities had 421 thousand inhabitants.

Increases in agricultural productivity also relaxed the land constraint, and were a

key factor in the growth of cities in Northwest Europe (Maddalena 1977, Pounds 1990,

Kriedte 1979). Agricultural productivity was positively associated with urbanization in

early modern Europe, and economies where city growth was concentrated also experi-

enced relatively high rates of productivity growth in agriculture. Figure 7 shows the

scatter plot of urbanization rates against Allen’s (2003) estimates of agricultural total

factor productivity in nine macroeconomies.

Figure 7: Agricultural TFP and Urbanization in European History
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Figure D1: Agricultural TFP and Urbanization in European History

Note: TFP estimates from Allen (2003). Urbanization rates from Acemoglu et al. (2005).

While the period 1500-1800 saw marked increases in agricultural productivity and in

the trade in food, the public health environment in cities did not improve substantially.

An extensive literature on the demography of early modern cities finds that urban death

rates exceeded urban birth rates and rural death rates.31 In general, mortality was

increasing in city size. Other things equal, this limited the growth of large cities. However,

the big revolutions in public health came after 1800 and mortality in large cities remained

31See Woods (2003b), Mols (1955, 1956), de Vries (1984), Bairoch (1988), and McIntosh (2001).
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relatively high throughout the early modern period. The plague stopped striking the

cities of Western Europe only well into the 1700s. It was only in the wake of the work

by John Snow in the mid-1850s that germ theories of disease transmission began to

be accepted. Previously, the dominant view was the miasma theory – which held that

diseases such as cholera or the Black Death were caused by a form of “bad air.” These

facts support the conclusion that the key changes were not in the domain of public health.

6 Explaining the Emergence of Zipf’s Law: Model

6.1 Motivation

The leading theories explain Zipf’s Law as the outcome of a random growth process.

Rossi-Hansberg and Wright (2007) have shown that the slight curvature observed in log

rank-log size plots of contemporary city population data may reflect a negative correlation

between city sizes and city growth rates. Intuitively, this curvature emerges when small

cities tend to grow quickly and “escape” to become mid-sized, and when larger cities

tend to grow slowly, leaving the largest cities smaller in size and the small cities fewer in

number than they “should be.” A similar, but more pronounced curvature characterizes

the historical data. As shown below, this curvature is observed when and where growth

rates were negatively correlated with city size over long periods.

I incorporate Rossi-Hansberg and Wright’s insight in a simple model of city growth.32

The model contains a feature that may deliver non-random growth: land may be a fixed

argument in production, generating decreasing returns to scale. When this feature is

“shut off,” the model reduces to the random growth model in Gabaix (1999b).

6.2 Environment

The model has overlapping generations. At any time t, cities indexed with i have old

residents N o
it and young residents Ny

it, with old people dying at some rate δ. The overlap-

ping generations structure has a first period in which potential workers are born young

and decide if and where to migrate (paying some fixed migration cost x). In subsequent

periods workers are old and live out their days without further migration.33

32In Rossi-Hansberg and Wright’s model, industrial specialization accounts for urban hierarchies.
However, Zipf’s Law emerged when industrial and functional specialization was very limited, suggesting
that another mechanism may have been at work.

33Workers are young once and typically old for multiple periods.
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There are city-specific amenity shocks ait due to some combination of policy and

nature. In particular:

ait = εit(1− τit) (5)

εit is an iid city-specific shock and τit ∈ (0, 1) is a city-specific distortion. Without loss

of generality, the amenity shocks ait enter utility multiplicatively:

u(c) = aitc (6)

Production is Cobb-Douglas in technology (A), labor (young Ny and old N o), and land

(L)34:

Yit = Ait(N
y
it)
α(N o

it)
β(Lit)

1−α−β (7)

Assume that α, β ∈ (0, 1) and that α + β ≤ 1. Where α + β = 1, production is CRS in

labor. By assumption, city residents own labor but not land.35 The wage is the marginal

product of labor and is consumed in each period:

cit = wit =
∂Yit

∂N j
it

j ∈ {y, o} (8)

The aggregate number of young potential migrants is determined by a “birth rate” nt and

the total number of mature agents. The birth rate can equally be taken as a description

of the migration rate from the non-urban sector. The number of young agents arriving

in each city is endogenous.

6.3 Analysis of City Growth – The General Case

Individuals choose a city i subject to city-specific migration taxes τit and given the exist-

ing distribution of populations (wages). The individual maximization problem reduces

to36:

maxi aitwit

34Production is modelled without a capital argument in the interest of parsimony. NB: In the pre-
and early modern era, fixed capital was important in the rural economy but less critical in the cities.
See Cipolla (1982).

35This assumption raises the question: who receives rents on urban land? One can assume following
Henderson (1974, 2005) that each city is owned by a single private land developer. This assumption
corresponds to the situation in many Eastern European cities, which were owned by feudal lords. Al-
ternately, one could assume that urban land is owned by a (small) patrician class. Introducing a class
of urban landowners who receive and consume the marginal product of urban land, would not change
the basic story. Historically, the evolution of city populations was largely driven by the evolution of
non-landowning populations. In the interest of parsimony, the model focuses on these agents.

36For simplicity, agents make a calculation based on utility in the current period, completely discount-
ing future periods (and potential tax changes). A tax on wages leads to the same results.
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In equilibrium with free mobility: uit = ut. It follows that:

wit =
ut
ait

(9)

Because young people earn wages equal to their marginal product, and wages equalize

across age groups, we have that:

wit = αAit(N
y
it)
α−1(N o

it)
β(Lit)

1−α−β (10)

Combining (5), (9), and (10), we get an expression for the number of new-comers in the

representative city:

Ny
it = (N o

it)
β

1−α (Ait)
1

1−α (Lit)
1−α−β
1−α (1− τit)

1
1−α

(
αεit
ut

) 1
1−α

(11)

The representative city growth rate is:

gNit ≡
∆Nit

Nit

=
Ny
it − δN o

it

N o
it

(12)

Substituting with equation (11) gives:

gNit = (N o
it)

β+α−1
1−α (Ait)

1
1−α (Lit)

1−α−β
1−α (1− τit)

1
1−α

(
αεit
ut

) 1
1−α

− δ (13)

A distortion hitting productivity would have an identical growth rate impact.

6.4 Case 1: Random Growth with No Distortions

The conventional argument in the Zipf’s Law literature is that growth rates are indepen-

dent of city size. This argument typically embodies three assumptions: fixed factors are

not important in urban production; productivity does not vary with population across

cities; and distortions are independent of city size. When land does not enter production

α+ β = 1. The idea that productivity and distortions (e.g. migration costs) do not vary

with city size can be captured by assuming: τit = τt and Ait = At. To consider the case

without distortions let τt = 0. Substituting into equation (13) gives:

gNit = (At)
1

1−α

(
αεit
ut

) 1
1−α

− δ (14)
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Since the only city-specific argument on the right-hand side of (14) is the iid random

shock εit, the rate of population growth is independent of city size. Provided we have

some (arbitrarily small) reflecting barrier that keeps cities from getting “too small,”

random growth delivers Zipf’s Law. This is the model in Gabaix (1999b).37

6.5 Case 2: Non-Random Growth Due to Fixed Land

Assume that migration costs are constant across cities, but land has some positive income

share. For simplicity, normalize Lit = Li = 1 and assume that Ait = At. We now have

the following variant of equation (13):

gNit = (N o
it)

β+α−1
1−α (At)

1
1−α (1− τt)

1
1−α

(
αεit
ut

) 1
1−α

− δ (15)

Here land has a positive income share because α+β < 1. This fact secures the key feature

of (15): city growth rates decline in population when land is fixed.38 Broadly, one can

imagine the long pre-modern era as one in which land entered production and land was

more or less fixed. Under a fixed-land regime, growth rates are negatively correlated with

city populations. Small cities will tend to draw high growth rates and become mid-sized.

Similarly, big cities will tend to draw low growth rates and remain relatively small. Thus

a fixed factor can deliver a distribution of growth rates in keeping with the curvature

we see in European city size distributions between 1300 and 1600. (See Appendix for a

simple simulation.)

6.6 Case 3: Taxes and Distorted Growth

Prospective migrants face utilities that embody a tax τit.
39 The tax τit generates non-

random growth when (and if) it falls hardest on larger cities. When the tax is constant

across cities, it lowers the variance of city growth rates.

Assume land is absent from production and all cities have the same level of produc-

37Gabaix assumes technology is fixed (At = 1).
38This model is sketched in reduced form. The model as sketched has distinct regimes. A more

detailed treatment could incorporate a transition that allows the share of income going to the fixed
factor to decay.

39It is assumed in equations (??) and (??) that τit enters utility through the multiplicative amenity
shock, but an additive structure would not change the story.
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tivity (normalized to unity). Migration into the representative city is:

Ny
it = N o

it(1− τit)
1

1−α

(
αεit
ut

) 1
1−α

(16)

The associated growth rate is:

gNit = (1− τit)
1

1−α

(
αεit
ut

) 1
1−α

− δ (17)

τit captures the serfdom distortion. It can be thought of as embodying the effects of

migration restrictions and legislation imposing higher effective taxes on larger cities (via

a productivity distortion) – as generating a negative correlation between size and growth.

The institutions of the second serfdom had such biases. Historically, the share of

economic activity accounted for by merchants and capitalists involved in the coordination

and financing of longer-distance trade was increasing in city size. An institutional set-up

biased against these activities is one with higher effective taxes on big cities. In Poland,

merchants were in 1565 forbidden from owning land, travelling abroad, and engaging in

international trade. In Prussia and Poland-Lithuania, land owners won the right to export

their produce directly, circumventing local cities and merchants, and without paying

otherwise required export taxes. In Poland, Prussia, and Bohemia price maxima were

also placed on urban goods tilting the terms of trade towards agricultural landowners,

lowering city incomes and the incentive to migration.40 In Hungary, the legislation passed

after the defeated peasant uprising of 1514 limited the mobility of tenant farmers and

eliminated the legal autonomy of towns. Migration restrictions also appear to have hit

larger towns hardest. Larger cities typically had to draw migrants from relatively far

afield. However, peasant migrants fleeing serfdom were not able to safely travel great

distances. In the late 1600s the Austrians sent an emissary to Krakow to press the

Polish authorities to implement their treaty agreement and return fugitive Silesian serfs.

While this suggests instances of remarkable mobility, Wright (1961) observes that for

most Bohemian serfs Poland was too distant to be an attainable asylum.

It is important observe that even a tax that does not vary with city size will delay

the emergence of Zipf’s Law by lowering the variance of the city growth rate.41 Assume

that τ is constant across cities and for simplicity denote the variance of ε
1/(1−α)
it with σ2

ε̃t .

40See Blum (1957), Carsten (1954), and Kula (1962).
41Gabaix (1999b) discusses how a growth process with a higher variance leads to relatively speedy

emergence of Zipf’s Law.
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From equation (17), the variance of the growth rate is declining in τ :

σ2
gN = (1− τt)

2
1−α

(
α

ut

) 2
1−α

σ2
ε̃t (18)

Moreover, these results hold when there is no distortion in amenities, but discriminatory

institutions operate such that productivity is deflated by τit:

Yit = (1− τit)Ait(Ny
it)
α(N o

it)
β(Lit)

1−α−β (19)

In this case, the city growth rate gNit suffers from a distortion identical to the one gen-

erated by a direct tax on migration. City growth is again negatively correlated with

city population when distortions rise in city size, and the variance of the growth rate is

depressed even when they do not.

7 Explaining the Emergence of Zipf’s Law: Empirics

This section examines random growth and locational fundamentals theories of Zipf’s Law.

7.1 Random Growth

The leading theories that account for Zipf’s Law posit random growth. This section

establishes when and how random growth emerged in Western Europe.

Table 9 shows that random growth emerged only after 1500. Before 1500, there was a

significant negative correlation between size and subsequent growth in every period except

1300-1400, the century of the Black Death. From 1500 forwards there is no significant

correlation between size and growth.

Next I group cities into size quantiles and examine the distribution of growth rates

within each quantiles. Figure 8 presents box-plots of city growth by size quintile (quintile

1 comprises the smallest cities and quintile 5 the largest). It confirms that large cities

were at a pronounced growth disadvantage 800-1200. Figure 9 presents data for 1200-

1800 and shows how random growth emerged from 1500 forward.

Figure 10 compares the distribution of growth rates for the top 10 percent and bottom

90 percent of cities using nonparametric kernel densities. It shows that up through the

period 1500-1600, the largest cities consistently grew more slowly than smaller cities.

It also shows that by 1700-1800, large and small cities were drawing growth rates from
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Table 9: Correlations Between City Size and City GrowthTable 8: Correlations Between City Size and City Growth

Period Correlation
(1) (2)

1000 to 1200 -0.69 **
1200 to 1300 -0.23 **
1300 to 1400 -0.09
1400 to 1500 -0.27 **
1500 to 1600 -0.05
1600 to 1700 0.00
1700 to 1800 -0.07

Significance at the 5 and 10 percent levels denoted by "**" and "*", respectively.Note: This table presents correlations between normalized city sizes and growth rates. If
the growth rate of city i is git in period t, and the mean and standard deviation across
cities are ḡt and σt, then normalized growth is ĝit = (git − ḡt)/σt. Significance at the 95
and 90 percent confidence levels denoted “**” and “*”, respectively.

Figure 8: City Growth Rates By Population Quintile 800-1200
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Note: This figure documents how normalized growth rates varied with city size.
The smallest cities are in quintile 1, the largest in quintile 5. The boxes describe
the interquartile range. The line within each box is the decile’s median growth
rate. The “whiskers” mark the adjacent values.

approximately identical distributions.

7.2 Locational Fundamentals

Geographic theories of Zipf’s Law hold that the distribution of natural advantages across

locations is the underlying determinant of city population distributions. This paper doc-

uments that European city populations have not always obeyed a power law distribution.
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Figure 9: City Growth Rates By Population Decile 1200-1800
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Figure X: The Distribution of Growth Rates by Population Decile

Note: The smallest cities are in decile 1, the largest in decile 10. The boxes
describe the interquartile range. The line within each box is the decile’s median.

Figure 10: The Distribution of City Growth Rates
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Figure X: The Distribution of City Growth Rates

Note: This figure presents kernel densities of the distribution of growth rates
for the largest 10 percent (Hi 10%)and smallest 90 percent (Lo 90%) of cities.

If the distribution of city populations is determined by locational fundamentals, this find-
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ing suggests that the fundamentals may be dynamic. For instance, the advantages of port

locations may be magnified in an era of relatively cheap ocean-going transport or when

new trade routes are opened. In other instances, locational advantages may be quite

literally constructed (harbors may be dredged, important canals dug, etc.).

Two key findings have been used to support a geographic theory of Zipf’s Law. The

first is Davis and Weinstein’s (2002) observation that a regional analogue of Zipf’s Law

holds over many centuries in the Japanese data and that Japanese regional population

densities in the past are highly correlated with contemporary population densities. As

Davis and Weinstein (2002) note, the observed high level of persistence raises the question

of whether Japan was special. Figure 11 shows that the high correlations Davis and

Weinstein find in the Japanese regional data are not matched in the European data on city

populations, but are matched in the European data on national population densities. This

suggests that a distinction should be drawn between regional and city-level population

data and that discussions of Zipf’s Law should (data permitting) focus on cities.

Figure 11: Correlation Between Historic and Contemporary Populations
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City population data are from Brinkhoff (2008) and Bairoch et al. (1988). Na-
tional population data are from Eurostat and Acemoglu et al. (2005). Correla-
tions for regional and national data are calculated using population densities.
Correlations for Japanese regions are from Davis and Weinstein (2002).

The second key finding for geographic theories is that city size hierarchies have been

remarkably stable in the 20th century even in the face of large temporary shocks. Davis

and Weinstein (2002) and Boosker et al. (2008) document that extensive and selective
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bombing of German and Japanese city cities during the second war had little long run

impact on the distribution of city populations in these countries. Evidence on such quasi-

natural experiments in the more distant past is very fragmentary. However, the long run

evidence suggests that European city size hierarchies were relatively dynamic.

The historical data reveal significant churning in European city hierarchies over the

course of centuries. The data thus support the conclusion that geography was not destiny

in any direct sense. It is not just that in 1500 the largest cities were concentrated in

Southern Europe, while in 1800 Europe’s largest cities were concentrated in Northwestern

Europe. There were also sharp shifts in urban populations at more local levels. In

1400, Madrid was a village while Cordoba and Granada had populations of 60 and 150

thousand. In 1800, Madrid had a population of 160 thousand, where Cordoba and

Granada had populations of 40 and 70 thousand. Cologne was the largest German city

between 1200 and 1500; today it is the seventh largest. Augsburg went from being the

largest German city in 1600 to 8th largest in 1800 and the 24th largest in 2006. In 1000

AD, Laon was the largest city in France with a population of 25 thousand, while Caen,

Tours, Lyon, and Paris all had approximately 20 thousand inhabitants. In 2006, Laon

had 27 thousand inhabitants, Caen had 186 thousand, Tours 307 thousand, Lyon 1.4

million, and Paris over 10 million. Ostia (population 50 thousand in the 2nd century),

Pozzuoli (population 65 thousand in the 2nd century), and Brindisi were great port cities

in the Roman era, but fell into disuse and remained small population centers over the

early modern era. In 200 AD Rome itself was Europe’s largest city with a population of

nearly one million. Between 800 and 900 AD, Rome had a population of approximately

50 thousand and was Western Europe’s second largest city. In 1300, Rome was the 32nd

largest city in Western Europe. Between 1500 and 1800, Rome was among the 10 largest

cities. By 1850 it was 17th.42

8 City Populations with Big Distortions: The Case

of Eastern Europe

In this subsection I explain how the institutions of the second serfdom distorted city

growth in Eastern Europe and were associated with deviations from Zipf’s Law.

The central institutions of the second serfdom restricted the free ciculation of labor

(Makkai 1979: 235). Bideleux and Jeffries (2007: 161) observe that that, “the legislative

42For historical populations see Bairoch et al. (1988), Meigs (1973), and Stillwell et al. (1976).
Contemporary French populations are for urban agglomerations and are from Brinkhoff (2008).
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strengthening of eastern European serfdom had begun during the 1490s” and that the new

laws reflected, “concerted action to restrict the rights and mobility of the peasantry.”43

After 1500, new institutions limiting labor mobility and the autonomy of cities were

installed in the economies East of the Elbe River.44 The laws passed in central Eastern

Europe typically required peasants entering towns to carry proof that they had obtained

their landlord’s permission to travel and formalized systems of adscription that legally

bound tenant farmers to rural estates. The laws provided for the cross-border return of

fugitive serfs, limited the activities of merchants and restricted the privileges of towns.

The new institutions rolled back previously guaranteed legal freedoms and end ed insti-

tutional convergence between Eastern and Western Europe.45

I construct an index of second serfdom laws, determining whether a given city was

located in a polity with the legal restrictions on peasant mobility that were the institu-

tional heart of the second serfdom. Table 9 records the dates of passage of the principal

laws limiting the mobility of tenant farmers. For a given city, the serfdom index captures

the presence of local laws limiting labor mobility, from the dates given in Table 9 until

the date of the first emancipation decree issued in the territory. Table 10 provides a

complete list of emancipation decrees.46

Regression analysis confirms that the institutions of the second serfdom were associ-

ated with large variations in city growth. In this section I present results from a baseline

model that includes controls for initial population, regional fixed effects, and period fixed

effects.47 I present results with and without controlling for the growth effects associated

with political primacy.48 The key finding is that the institutions of the second serfdom

43See also Samsonowicz and Maçzak (1985), Bogucka (1982), Pachs (1994), Berend (1986), Süchs
(1988), Kahan (1973), Anderson (1974a, 1974b), Wright (1958, 1975), Hagen (1998), Melton (1988),
Blum (1957, 1978), Carsten (1954), Brenner (1974), and Topolski (1982, 1974).

44Historians come to a striking consensus on the Elbe boundary. Kriedte (1979: 22) notes that
the Elbe River “became the most significant socio-economic divide in Europe.” Berend (1986: 333-
334) observes that, “with astonishing precision,” the Elbe constituted, “The sharp line of demarcation
between the economic and social structures that divided Europe in two after approximately the year
1500.” Robisheaux (1998: 111) observes that, “The line runs South along the Elbe river, through Saxony,
and along the Erzebirge Mountains and heavily forested border between Bohemia and Bavaria.” See
also Bideleux and Jeffries (2007), , Süchs (1988), Maddalena (1977), and Brenner (1974).

45These laws were instituted in economies where cities were walled and entered only through guarded
gates (Friedrichs (1995: 21-22). Feudal lords often maintained control over the gates and employed
the gatekeepers (Nicholas 2003). See also Miller (2008: 37) and Mols (1955: 347-348). The penalties
associated with illegal movement were severe. The Prussian legal ordinances of 1494 stipulated that
runaway peasants could be hanged by their masters without trial or arbitration. Carsten (1954: 108).

46The results presented below reflect a coding where SERF=1 over periods when legal restrictions
were in place a majority of the time. A coding that relies on a continuous measure of fraction of years
under serfdom yields similar results.

47Adding country fixed effects has no substantive impact on the estimated associations between growth
and the institutions of the second serfdom.

48Gabaix (1999b) observes that capitals typically do not conform to Zipf’s Law. As observed on p. ??,
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Figure X: The Emergence of Zipf’s Law in Eastern Europe
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Note: This figure plots raw data on city populations (Si) and size rankings
(Ri), and fitted values estimated using robust non-parametric Theil regression
and the model: ln(Ri) = α− βln(Si) + εi. See note to Figure 2.

Table X: Comparison of City Growth & Deviations from Zipf’s Law
Title

Correlation Between Size & Growth Deviation from Zipf's Law
Period Starting Western Europe Eastern Europe Western Europe Eastern Europe

(1) (2) (3) (4) (5)
1400 -0.27 ** -0.38 * 4.21% 4.31%
1500 -0.05 -0.39 ** 1.51% 3.73%
1600 0.00 -0.29 * 0.58% 1.32%
1700 -0.07 -0.03 0.50% 4.89%
1800 --  --  0.18% 0.85%

Note: .

were associated with a 1/3 cut in city growth.

The baseline estimating equation examines the association between growth and the

Berlin and Vienna were unusual in growing quickly and being substantially larger than predicted by
robust regression in 1800.
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Table X: Dates of Principal Legal Restrictions on Free Migration

Table 9: The "Second Serfdom" in Eastern Europe
Dates of Principal Legal Restrictions on Free Migration

Historic Territory Contemporary Location Date
(1) (2) (3)

Austria Austria 1539
Bohemia Czech Republic 1487
Brandenburg Eastern Germany 1528
Hungary Hungary 1514
Livonia Estonia & Latvia 1561
Mecklenberg Northeastern Germany 1654
Poland Poland 1495
Pomerania Northeastern Germany 1616
Prussia Eastern Germany, Poland 1526
Romanian Wallachia Romania late 1500s
Russia Russia 1640s/1700s
Saxony Eastern Central Germany --
Schleswig-Holstein Northern Germany 1617
Silesia Czech Rep., Poland, East Germany 1528

    See Appendix for sources.Note: See Appendix for sources.

Table X: Dates of Emancipation Decrees in Eastern Europe
Restrictions on Labor Mobility

Historic Territory Year
(1) (2)

Poland (Grand Duchy of Warsaw), Prussia 1807
Estonia 1816
Courland 1817
Livonia 1819
Mecklenberg 1820
Saxe-Altenberg 1831
Saxony 1832
Scwarzburg-Sonderhausen, Reuss (older), Saxe-Weimar, Austria, Saxe-Gotha, Anhalt-Dessau-Köthen 1848
Schawrzburg-Rudolstat,Anhalt-Bernberg 1849
Saxe-Meiningen 1850
Reuss (younger) 1852
Hungary 1853

Note: See Appendix for sources.

laws of the second serfdom:

log growthi,t = α + β(log size)i,t +
∑
j

γjregionj+∑
k

ηkyeark + θ(second serfdom)i,t + εi,t (20)

Table 11 presents results for several geographic samples.49 Table 11 begins with a sample

49The non-Russian sample includes Kaliningrad (Königsberg) and cities in the Baltics. The Broad
Central Europe sample comprises the cities in contemporary Germany, Austria, Poland, Hungary, the
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Table 11: Baseline Analysis of City Growth From 1300 to 1850
Dependent Variable is Log City Growth

Non- Broad Central Non- Broad Central
Independent Russian Central Eastern Russian Central Eastern

Variable Europe Europe Europe Europe Europe Europe
(1) (2) (3) (4) (5) (6) (7)

Log Size -0.01 0.01 0.02 -0.03 ** -0.01 -0.02
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)

Serf -0.10 ** -0.17 ** -0.14 ** -0.10 ** -0.15 ** -0.10 **

(0.04) (0.05) (0.05) (0.03) (0.04) (0.04)

West 0.05 -0.16 ** -0.13 ** 0.04 -0.17 ** -0.12 **

(0.05) (0.03) (0.03) (0.05) (0.02) (0.03)

East 0.19 ** 0.19 **

(0.05) (0.05)

Capital 0.42 ** 0.41 ** 0.49 **

(0.05) (0.06) (0.05)

Time FE    Yes    Yes    Yes    Yes    Yes    Yes
Observations 4,069 1,523 773 4,069 1,523 773
F Statistic 65.06 28.60 20.97 65.32 30.74 35.85
R Squared 0.14 0.16 0.23 0.16 0.17 0.25

SE Clustered On City On City On City On City On City On City

Note: Non-Russian Europe includes cities in Ottoman Europe and the Baltics. Sig-
nificance with 90 and 95 percent confidence denoted with “*” and “**”, respectively.

of non-Russian cities. However, given the emphasis Acemoglu et al. (2005) place on the

role Atlantic trade played in early modern city growth, it makes sense to also examine

samples that exclude Atlantic cities and focus on the impact of serfdom on city growth

within central Europe. Across geographic samples two parameter estimates stand out.

First, there is a strong positive association between city growth and location in Eastern

Europe: an Eastern location is associated with an increase of over 0.1 log points of growth

every 100 years (at least 10 extra percentage points).50 As shown below, this association

is robust and appears to reflect the catch-up growth advantage held by the relatively small

cities of the East. Second, there is a significant negative association between serfdom and

growth roughly equal to the positive association between Eastern location and growth.

Among Central Eastern European cities, serfdom is associated with a decline in growth

former Czechoslovakia, and France. The Central Eastern Europe sample is limited to cities in Germany,
Austria, Poland, Hungary, and the former Czechoslovakia.

50In samples restricted to Western and Eastern Europe, a Western location has a negative association
with growth.
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of 0.14 log points. Among non-Russian cities the estimated decline is 0.10 log points.51

These magnitudes are economically significant. Over 100 years, a decline of 15 per-

centage points implies a decline of 0.0016 in the annual growth rate. But mean growth

in the East from 1300 to 1850 was 0.0054 and mean annual growth in the East was not

more than 0.0027 before 1750. For illustration: (0.0016)/(0.0016 + 0.0054) ≈ 23 percent,

and (0.0016)/(0.0016 + 0.0027) ≈ 38 percent. Parameter estimates of these magnitudes

suggest that the imposition of laws restricting labor mobility may have cut Eastern city

growth by two fifths over several centuries.

In every sample, the positive association between an Eastern location and growth

and the negative association between serfdom and growth essentially cancel each other

out. As discussed above, overall growth rates in Western and Eastern cities are roughly

comparable. The fact that Eastern cities grew relatively quickly, but that serfdom was as-

sociated with slow growth suggests that the institutional framework may have prevented

or delayed a catch-up process otherwise under way.

As observed above (section 6.6), we expect a tax that depresses growth to reduce the

variance of city growth rates. This matters because Zipf’s Law emerges relatively slowly

where the variance of growth rates is low. Table 12 compares similarly sized cities and

shows that the institutions of the second serfdom were associated with relatively low

variance in city growth between 1500 and 1700. It further shows that from 1500 to 1800

the coefficients of variation for the largest cities (population at least 50,000) were lower

in cities exposed to serfdom than in their Western counterparts.

The institutions of the second serfdom may also have delayed the emergence of Zipf’s

Law by generating non-random growth. As discussed above, political capitals were un-

usual in being large and fast growing cities. When they are excluded from the analysis,

we observe (i) a negative correlation between growth and size across institutional regimes,

and (ii) that the negative correlation is both substantially stronger and more imprecisely

estimated for cities exposed to serfdom. Figure 6 illustrates this by pooling normalized

data and plotting normalized growth rates against normalized city sizes.

51Russian cities are excluded for two principal reasons. First, data on Russian city populations is
uniquely noisy (Bairoch 1988: 170). Second, given the distinct nature of Russian institutions, historians
distinguish Russia from the states that fall within the original limits of the second serfdom (Makkai
1975: 233).
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Table 12: The Second Serfdom and the Variance of City Growth Rates

Period Institutional Coefficients of Variation for Cities Grouped by Population
Starting Regime 5k - 6k 7k - 9k 10k-14k 15k - 24k 25k - 49k 50k +

(1) (2) (3) (4) (5) (6) (7) (8)

1500 Serfdom 0.6 0.1 0.4 4.9 2.3 0.0
No Serfdom 1.2 4.9 2.2 2.2 9.0 4.7

Ratio 0.5 0.0 0.2 2.2 0.2 0.0

1600 Serfdom 2.2 2.0 2.1 2.1 2.2 6.1
No Serfdom 4.7 2.4 4.3 9.8 4.7 37.1

Ratio 0.5 0.8 0.5 0.2 0.5 0.2

1700 Serfdom 1.8 2.6 1.3 11.1 5.0 1.4
No Serfdom 1.8 1.8 1.9 5.3 3.0 4.5

Ratio 1.0 1.4 0.7 2.1 1.7 0.3

Note: Cities are grouped by population.  For instance, cities in column (3) had populations 
between 5 and 6 thousand, inclusive.   The coefficient of variation is the absolute value of the 
ratio of the standard deviation of growth to mean growth over 100 year intervals.  

Note: This table presents coefficients of variation for cities grouped by population. For
instance, cities in column (3) had populations between 5 and 6 thousand, inclusive.

OLS Slope:      −0.04
Standard Error:  0.02
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Figure 6: Growth and City Size

Note: This graph shows the relationship between growth and size in pooled,
normalized data. The data includes all cities that were not political capitals.
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9 Conclusion

Zipf’s Law is supposedly one of the most robust empirical regularities in economics. This

paper has shown that, to the contrary, Zipf’s Law emerged over time in European history.

In particular, Zipf’s Law emerged over the transition to modern economic growth as city

production became less reliant on quasi-fixed local land endowments and city growth

rates became random, in the sense of being independent of city population.

The historical emergence of Zipf’s Law also has implications for economic theory. The

fact that Zipf’s Law emerged over time – while the principal features of the landscape were

invariant – suggests that narrowly geographic explanations will be insufficient. Propitious

locations are non-homogeneous and distributed unevenly, but the historical emergence of

Zipf’s Law suggests that locational advantages may emerge with economic development,

and hence be endogenous along important dimensions. In addition, the fact that Zipf’s

Law emerged in an era when the industrial specialization of urban activity was relatively

limited suggests that explanations emphasizing cities specialized in the production of

particular goods and reaching optimal size for their activity may not capture the root

process. The historical evidence is, however, consistent with theories emphasizing random

growth in the emergence of Zipf’s Law.
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[10] Bath, S. van (1977), “Agriculture in the Vital Revolution,” in E. Rich and C. Wilson

eds., The Cambridge Economic History of Europe, Vol. 5, Cambridge; Cambridge

University.

[11] Berend, I. (1986), “The historical evolution of Eastern Europe as a region,” Inter-

national Organization, Vol. 40, No. 2, pp. 329-346.

[12] Bideleux, R. and I. Jeffries (2007), A History of Eastern Europe, London; Rout-

ledge.

[13] Black, D. and J. Henderson (1999), “A Theory of Urban Growth,” Journal of

Political Economy, Vol. 107, No. 2.

[14] Blockmans, W. (1994), “State Formation in Preindustrial Europe,” in C. Tilly and

W. Blockmans eds., Cities and the Rise of States in Europe, AD 1000 to 1800,

Boulder, CO; Westview.

[15] Blum, J. (1957), “The Rise of Serfdom in Eastern Europe,” American Historical

Review, Vol. 62, No. 4, pp. 807-836.

[16] Blum, J. (1978), The End of the Old Order in Rural Europe, Princeton; Princeton

University.

[17] Bogucka, M. (1982), “Polish towns between the sixteenth and eighteenth centuries,”

in J. Fedorowicz et al. eds., A Republic of Nobles: Studies in Polish History to 1864,

Cambridge; Cambridge University.

[18] Botero, G. (1602), A Treatise Concerning the Causes of the Magnificency and

Greatness of Cities : http://socserv.mcmaster.ca/econ/ugcm/3ll3/botero/cities.

[19] Brakman, S. et al. (2004), “The strategic bombing of German cities during WWII

and its impact on city growth,” Journal of Economic Geography, Vol. 4, pp. 201-

218.

34



[20] Braudel, F. (1966), La Méditerranée et le Monde Méditerranéen À L’Époque De
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A Appendix: Data

City populations are from Bairoch et al. (1988) and de Vries (1984). City locations are

from Bairoch et al. (1988), cross-checked using http://www.batchgeocode.com/.

Data on the dates and and nature of the laws restricting labor mobility and limiting

the rights of urban groups under the second serfdom is from Makkai (1975), Topolski

(1982), Blum (1957), Carsten (1954), Szelényi (2006), Davies (1981), Pachs (1994), Hellie

(1971), Kahan (1973), Kamiński (1975), Bogucka (1984), Melton (1988), Maddalena

(1977), and Bideleux and Jeffries (2007). Data on the dates of emancipation decrees is

from Blum (1978). The historical coding of the Polity-IV index of constraints on arbitrary

executive authority is from Acemoglu et al. (2002, 2005). DeLong and Shleifer (1993)

class regional institutions as either promoting relatively unrestrained and autocratic rule

(“prince”) or as securing relative freedom (“free”). I extend this coding to Poland and

Ottoman Europe, neither of which meet the criteria for classification as “free” between

1300 and 1850 (this is confirmed by DeLong).

Data on the historical location of universities are from Darby (1970), Jedin (1970),

and Bideleux and Jeffries (2007). Data on the historical location of religious institutions

are from Magosci (1993) and Jedin (1970). Data on Roman settlements are from Stillwell

et al. (1976).

Data on the historical location of ports are from Acemoglu et al. (2005), supple-

mented by data in Magosci (1993) and Stillwell et al. (1976), and the sources cited in

section ??. The data in this paper supplements Acemoglu et al. (2005) by coding for

cities that were historically ports on the Baltic. These cities include: St. Petersburg,

Gdańsk, Kaliningrad, Szczezin, Rostock, and Lübeck. In addition, the coding in this pa-

per accounts for Mediterranean and Black Sea ports omitted in Acemoglu et al. (2005):

Gaeta, Fano, Kerch, Korinthos, Pozzuoli, and Trapani.

Data on the location of navigable rivers are drawn from Magosci (1993), Pounds (1979,

1990), Livet (2003), Cook and Stevenson (1978), Graham (1979), Stillwell et al. (1976),

and de Vries and van der Woude (1997). The coding captures the principal historically

navigable waterways, and does not class as “navigable” waterways that required substan-

tial improvements (dredging, re-channeling, etc.) and became navigable only over the

early modern era.
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National-level urbanization rates are from Acemoglu et al. (2005). Data on national-

level agricultural TFP are from Allen (2003). Data on consumer prices in European cities

are from Allen (2001).

B Appendix: Measurement Error

I test for measurement error in the historical population data several ways. I first compare

the Bairoch data to the most comprehensive independent source for city population data,

the database in de Vries (1984). The Bairoch data covers all European cities that reached

5,000 inhabitants by or before 1800, has rich data from 1300 to 1850, and contains

observations on 2,204 cities. The data in de Vries (1984) covers cities that reached a

population of 10,000 between 1500 and 1800. It contains observations on 379 cities.

Table B1 compares data for cities in both databases. It shows that, on average, the

sources give figures that are within 7 percentage points of each other. In keeping with

the notion that measurement error increases as we reach back in the historical record,

the deviations between the de Vries and Bairoch data decline over time: the correlation

rises from 0.89 in 1500 to 1.00 in 1800; the ratio of recorded values approaches 1 and its

standard deviation falls.

Table B1: Comparison of Source Data on City PopulationsTable 3: Comparison of Source Data on City Populations

Ratio of Bairoch Data to de Vries Data
Year Cities Corr. Mean St. Dev. Min. Max. Skew.
(1) (2) (3) (4) (5) (6) (7) (8)

1500 117 0.88 1.07 0.30 0.50 2.50 2.92
1600 207 0.95 1.07 0.44 0.40 5.00 5.60
1700 250 0.99 1.02 0.22 0.42 2.31 2.83
1800 367 0.99 1.02 0.18 0.12 2.00 0.60

Note: This table compares population data from Bairoch et al. (1988) and
de Vries (1984). Column (3) presents the correlation between recorded values.
Columns (4) to (8) examine the ratio of these values.

Given the deviations from Zipf’s Law in the upper tail of the Bairoch data, it is

natural to ask whether discrepancies are associated with city size. Figure B1 plots the de

Vries data against the Bairoch data. It shows no evidence of systematic shortfalls in the

populations that the Bairoch data record for large cities.52 However, it is possible that

52Classical measurement error is not a plausible explanation for the observed deviations from Zipf’s
Law. See Gabaix (2008), who observes that: power laws are preserved under addition, multiplication and
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there is non-classical measurement error in both the Bairoch data and de Vries (1984).

In section 4.1, I show that the data would have to embody implausibly large non-classical

measurement error for Zipf’s Law to have actually held. In section 5, I show that the

observed deviations are consistent with the narrative evidence.

Figure B1: Comparison of Source Data on City Populations
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Note: This figure plots city populations recorded in de Vries (1984) against corresponding values in
Bairoch et al. (1988). The 45 degree line is shown to clarify where the Bairoch data provide larger
(smaller) values.

C Appendix: Emergence of Zipf’s Law at the Na-

tional Level

Data in Russell (1972) on urban systems in the high middle ages shows that Zipf’s Law

did not hold at the local level. Figure 5 shows how Zipf’s Law emerged between 1400

and 1800 in the six leading national economies of Western Europe.

D Appendix: Small-Sample Estimators for Zipf Ex-

ponents

This appendix discusses the estimation of Zipf exponents and some properties of the

Theil estimator.

Classically, Zipf’s exponents have been estimated with standard OLS regressions of

the form:

lnRi = α− βlnSi + εi (21)

polynomial combination; multiplying by normal variables or adding non-fat tail noise does not change
the exponent; and while noise will effect variances in empirical settings, it does not distort the exponent.
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Figure ??: The Emergence of Zipf’s Law at the National Level
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Figure X: European City Size Distributions in 1400 and 1800

There are two problems with a standard OLS estimator. The first is that, even if the

data generating process conforms strictly to a power law, the estimated coefficient β̂OLS

will be biased down in small samples. (As noted below, OLS standard errors are also

biased down.) Gabaix and Ibragimov (2007) have proposed a remedy that reduces the

bias in OLS coefficients to a leading order: adding a shift of -1/2 to the city rank data.

ln(Ri − 1/2) = α− βlnSi + εi (22)

For many applications this adjusted OLS approach may eliminate small sample bias.

However, the second problem with least squares is that any OLS estimator may be

subject to gross errors in contexts marked by significant outliers. This is because the OLS

estimator suffers from sensitivity to tail behavior. As He et al. (1990: 1196) note, “the

tail performance of the least-squares estimator is found to be extremely poor in the case

of heavy-tailed error distributions, or when leverage points are present in the design.”

Given the shape of the rank-size relation for European cities in the early modern era,

this is a particular concern here.

The literature has discussed the Hill maximum likelihood estimator (MLE) as an

alternative to OLS.53 However, as Gabaix and Ioannides (2004) observe, the small sample

53See Soo (2005), Newman (2005), and Clauset et al. (2007). For a sample of n cities with sizes Si

ordered so that S(1) ≥ . . . ≥ S(n), the Hill estimator is: β̂H = (n− 1)/
∑n

i=1

[
ln(S(i))− ln(S(i+1))

]
.
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biases associated with the Hill estimator can be quite high and very worrisome. Moreover,

the Hill estimator is the MLE under the null hypothesis that the data generating process

is a distributional (and specifically Pareto) power law, but is not the MLE if the empirical

distribution is not Pareto. For these reasons, this paper does not present estimates using

the Hill estimator.

Robust regression techniques have been designed for situations where sample sizes are

small and/or outliers may have an undue impact on OLS estimates. A number of robust

regression estimators use the framework provided by the median. In particular, the

nonparametric estimator derived from Theil (1950) is intuitive, asymptotically unbiased,

robust with small samples, allows us to go some distance in addressing the problem posed

by outliers, and has not been exploited in the Zipf’s Law literature.54 The Theil slope

parameter is calculated as the median of the set of slopes that connect the complete

set of pairwise combinations of the observed data points. Given observations (Yk, xk) for

k = 1, . . . , n, one computes the N = n(n−1)/2 sample slopes Sij = (Yj−Yi)/(xj−xi), 1 ≤
i < j ≤ n. The Theil slope estimator is then: βT = median{Sij}. The corresponding

constant term is: αT = mediank{Yk − βTxk}. Hollander and Wolfe (1999) provide a

generalization of the Theil estimator for cases where – as in the Bairoch data – the xk

are not all distinct.

The Theil estimator is competitive with the rank-adjusted OLS estimator suggested in

Gabaix and Ibragimov (2007) in eliminating small sample bias. This is evident in Figure

B1, which uses simulated data (generated by a process with Zipf exponent equal to 1) to

compare small sample biases in estimated β’s across OLS, rank-adjusted OLS, and Theil

estimators.55 Figure B1 reports mean estimates of the Zipf coefficient calculated over

1,000 simulations, each of which generates n synthetic observations from a distributional

power law. To illustrate how estimates change with the sample size, Figure B1 reports

the results as the number of observations in the simulations (n) rises from 20 to 300.

While biased in small samples (n < 80), the small-sample bias in Theil estimates is

relatively small. Moreover, the Theil estimate converges faster than OLS and as fast as

the rank-adjusted OLS estimate.

The Theil estimator also generates relatively precise estimates. Gabaix and Ibragi-

54The repeated median regression suggested by Siegel (1982) and the least median of squares estimator
suggested by Rousseeuw and Leroy (1987) are alternatives. But in the empirical context of this paper,
they produce estimates that are virtually identical to the somewhat more elegant and parsimonious
Theil (1950) estimator. Dietz (1989) considers a set of nonparametric slope estimators, and finds that
the Theil estimator is robust, easy to compute, and competitive with alternative estimators in terms of
mean squared error.

55Data are constructed as follows. Sample n times from a uniform distribution on the unit interval to
obtain xi, i = 1, . . . , n. Construct sizes Si = 1/xi and rank the Si’s.
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Figure B1: Monte Carlo Estimates of the Zipf Exponent
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mov (2007) show that, when we estimate power law exponents in small samples, OLS

standard errors are biased down.56 The confidence interval associated with Theil regres-

sion estimates similarly overstates the estimator’s precision when data are drawn from

a distributional power law.57 To gauge and compare the true precision of these estima-

tors, we can use Monte Carlo simulations. Figure B2 shows that the Theil estimates

are more precise than the adjusted-OLS estimates. Future research may establish other

empirical strategies, but Theil estimator effectively limits small sample bias as well as

the estimators employed in the literature, while in addition being both robust to outliers

and relatively precise.

Given that the most widely used regression estimator is OLS, and that the Theil

estimator is constructed as the median of the observed pairwise slopes, it is worth noting

that OLS estimator is itself a weighted average of pairwise slopes. Using h to index the

set of paired data points, define:

h ≡ (i, j) X(h) ≡

[
1 xi

1 xj

]
y(h) ≡

[
yi

yj

]
b(h) ≡ X(h)−1y(h)

Under this notation, the OLS estimator is: βOLS =
∑N

h=1w(h)b(h), where the weights

56The true standard error of β̂ in equation (22) is asymptotically (2/n)0.5β̂.
57See Hollander and Wolfe (1999) for calculation of confidence intervals on Theil slope parameter.
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are defined as: w(h) = |X(h)|2/
∑N

h=1 |X(h)|2. These weights are proportional to the

distance between design points. As Koenker (2005: 4) observes this is a fact that, “in

itself, portends the fragility of least squares to outliers.”

E Appendix: Conventional OLS Regression Test

Indexing cities with i and denoting city size S and city rank R, Zipf’s exponents have

classically been estimated with OLS regressions of the form:

lnRi = α− βlnSi + εi (23)

A number of studies suggest employing a regression augmented with a quadratic term to

detect non-linearities and deviations from distributional power laws58:

lnRi = β0 − β1lnSi + β2(lnSi)
2 + νi (24)

As discussed below, the standard errors associated with this model are biased down.

However, I present historical estimates of equation (24) to facilitate comparison with

existing studies using non-historical data. Table 4 shows that between 1500 and 1700,

58As Soo (2005) notes, this regression may be viewed as a weak form of the Ramsey RESET test.
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and certainly by 1800, a “modern” city size distribution emerged in Western Europe.

In contemporary data on a large sample of countries, Soo (2005) finds estimates of Zipf

exponents ranging from 0.7 to 1.5. From 1700, Western European cities have a Zipf

exponent β̂1 ∈ (0.7, 1.5) and modest non-linearity in the logarithmic rank-size relation:

β̂2 is “small” and by 1800 vanishes.

Table 4: OLS Regression Analysis of Deviations from Zipf’s Law
Table 4: Conventional Regression Analysis of Deviations from Zipf's Law

Year Observations Parameter β 1 Parameter β 2
(1) (2) (3) (4)

1300 255 0.30 -0.28
(0.08) (0.02)

1400 187 -0.13 -0.22
(0.20) (0.04)

1500 321 0.20 -0.20
(0.11) (0.02)

1600 514 0.82 -0.08
(0.04) (0.01)

1700 539 0.95 -0.04
(0.05) (0.01)

1800 1,311 1.36 0.00
(0.04) (0.01)

Note: The estimated regression is: lnRi = β0−β1lnSi+β2(lnSi)
2+νi, where Ri is city rank and

Si is city population. Heteroskedasticity-robust standard errors in parentheses. As discussed in
the text, Table 5 corrects for the biases in these standard errors.

However, the estimates in Table 4 should be treated with caution. It can be shown

using synthetic data from a pure power law distribution that heteroskedasticity-robust

standard errors associated with equation (24) exhibit downward bias in finite samples.59

It follows that the statistical significance of β̂2 is not a robust criterion on which to base

rejection of Zipf’s Law. Hence Table 4 should be read as indicating the existence (or

absence) of gross departures from Zipf’s Law, not as a precise test.

F Appendix: Serfdom

The consistency of the negative association between size and growth under serfdom is also

evident when we examine the data on a period-by-period basis. To show this, I present

59Ranking induces a positive correlation between residuals which escapes conventional estimation. See
Gabaix and Ioannides (2004: 2348).
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Figure 7: Predicted City Growth − Regression Analysis

Note: This figure shows the persistent and pronounced negative relationship
between size and growth for cities exposed to the second serfdom. The regression
model is: logSi,t+1 − logSi,t = α0 + α1logSi,t + α2CAPITALi + εi. The figure
presents predicted values setting the capital indicator to zero.

predictions from a regression where variations in the log of city growth are explained

by the log of city size and political primacy (i.e. an indicator capturing whether or not

a given city was a capital). Figure 7 presents predicted values from this regression

and shows that the negative correlations between city populations and city growth rates

were pronounced and persistent in Eastern Europe over the second serfdom. However,

the estimated relationship between size and growth under serfdom is not significant at

conventional levels. This may be explained in two ways. First, it may be that the

relationship is simply not statistically significant. Second, it may be that measurement

error is attenuating the parameter estimates and masking a relatively strong underlying

association. As suggested in Table 3 above, the data on city size is noisy. Since I calculate

city growth based on observed size, observed city growth is likely very noisy.60

60Simple calibration exercises – not reported here – suggest that given unobserved data with a highly
significant correlation growth and size, measurement error of the sort suggested by Table 3 would reduce
the precision of the estimated association.
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G Appendix: Simulation of Model

A simple – and provisional – simulation illustrates how the model can generate deviations

from Zipf’s Law. Figure C1 shows the city-size distributions that result when one takes

an arbitrary, fixed set of cities and runs them through the model assuming that the fixed

land (L) has a positive income share and that productivity is static and common across

cities. The simulation is run over 250 periods. It is assumed that α = 0.6, β = 0.2,

δ = 0.1. The scaling factor u is chosen to lend plausible final sizes, but has no impact on

Figure C1: City Sizes When Fixed Land Enters Production
Two Representative Simulations Based on City Growth Model
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the shape of the distribution. With no technological change, the model tends to a state

with no growth in population (or per capita income) aside from ephemeral variations

induced by stochastic shocks. Simulating the model with taxes τit > 0 and increasing in

city size gives equivalent results.
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